Advantage Shuffle
第15天。emmm,这就半个月了??
今天的题目是 Advantage Shuffle :
Given two arrays A
and B
of equal size, the advantage of A
with respect to B
is the number of indices i
for which A[i] > B[i]
.
Return any permutation of A
that maximizes its advantage with respect to B
.
Example 1:
1 | Input: A = [2,7,11,15], B = [1,10,4,11] |
Example 2:
1 | Input: A = [12,24,8,32], B = [13,25,32,11] |
Note:
1 <= A.length = B.length <= 10000
0 <= A[i] <= 10^9
0 <= B[i] <= 10^9
这道题就是个贪心的思路,确保每个位置上,A[i]
的值要么是A
中第一个比B[i]
大,要么是最小能用的值,这就涉及到了怎么找到第一个比B[i]
大的值的问题了,我们可以二叉查找树来实现,这里用STL中的multiset
即可:
1 | vector<int> advantageCount1(vector<int>& A, vector<int>& B) { |
这个方法虽然可以AC,但是时间效率不高,所以我们可以用排序的方法来代替二叉查找树,我们按B从大到小的顺序来填A的值,这样如果A中当前能用的最大值比B[i]
要大,那么A[i]
为A中当前能用的最大值,否则为A中当前能用的最小值。
1 | vector<int> advantageCount(vector<int>& A, vector<int>& B) { |