第90天。
今天的题目是Linked List Random Node:
Given a singly linked list, return a random node’s value from the linked list. Each node must have the same probability of being chosen.
Follow up: What if the linked list is extremely large and its length is unknown to you? Could you solve this efficiently without using extra space?
Example:
// Init a singly linked list [1,2,3]. ListNode head = new ListNode(1); head.next = new ListNode(2); head.next.next = new ListNode(3); Solution solution = new Solution(head);
// getRandom() should return either 1, 2, or 3 randomly. Each element should have equal probability of returning. solution.getRandom();
写出了一个朴素的解法,两次扫描:
Solution(ListNode* p) {
len = 0;
head = p;
while(p) {
len++;
p = p->next;
}
cout << len << endl;
}
/** Returns a random node's value. */
int getRandom() {
int r = rand() % len;
cout << r << endl;
ListNode *p = head;
while(r-- && p) {
p = p->next;
}
return p->val;
}
int len;
ListNode *head;
然后是利用栈来做的一个解法,即一直递归调用直到链表结尾,这时我们已经遍历了一遍链表就可以知道其长度了,在这时生成随机数,然后在递归调用返回的时候通过这个随机数来选取节点:
int getRandom() {
temp_len = 0;
getRandom(head);
return res;
}
bool getRandom(ListNode *p) {
if (p == nullptr) {
rand_n = rand() % temp_len;
return false;
}
temp_len++;
if(getRandom(p->next)) return true;
if (rand_n == 0) {
res = p->val;
return true;
}
rand_n--;
return false;
}
int temp_len;
int rand_n;
ListNode *head;
int res;
最后是dicuss
中的水库抽样法:
int getRandom() {
int res = head->val;
ListNode* node = head->next;
int i = 2;
while(node){
int j = rand()%i;
if(j==0)
res = node->val;
i++;
node = node->next;
}
return res;
}
证明可参考:http://blog.csdn.net/so_geili/article/details/52937212