# N-ary Tree Level Order Traversal

Nov 23, 2019

Given an n-ary tree, return the level order traversal of its nodes' values.

Nary-Tree input serialization is represented in their level order traversal, each group of children is separated by the null value (See examples).

Example 1:

Input: root = [1,null,3,2,4,null,5,6]
Output: [[1],[3,2,4],[5,6]]


Example 2:

Input: root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
Output: [[1],[2,3,4,5],[6,7,8,9,10],[11,12,13],[14]]


Constraints:

• The height of the n-ary tree is less than or equal to 1000
• The total number of nodes is between [0, 10^4]

class Node {
public:
int val;
vector<Node*> children;

Node() {}

Node(int _val, vector<Node*> _children) {
val = _val;
children = _children;
}
};


1. DFS
vector<vector<int>> res;
vector<vector<int>> levelOrder(Node* root) {
dfsWithHeight(root, 0);
return res;
}
void dfsWithHeight(Node *root, int h) {
if (root == nullptr) return;
if (h == res.size()) res.push_back(vector<int>());
res[h].push_back(root->val);
for(int i = 0;i < root->children.size(); i++) {
dfsWithHeight(root->children[i], h + 1);
}
}

1. BFS
vector<vector<int>> levelOrder2(Node* root) {
vector<vector<int>> res;
if (root == nullptr) {
return res;
}
vector<int> vec;
queue<Node *> q;
q.push(root);
q.push(nullptr);
while(q.size() != 1) {
vec.clear();
root = q.front();
while(root) {
q.pop();
vec.push_back(root->val);
// cout << root->val << endl;
for(int i = 0;i < root->children.size(); i++) {
q.push(root->children[i]);
}
root = q.front();
}
q.pop();
q.push(nullptr);
res.push_back(vec);
}

return res;
}

vector<vector<int>> levelOrder1(Node* root) {
vector<vector<int>> res;
if (root == nullptr) {
return res;
}
vector<int> vec;
vector<Node *> nodes;
vector<Node *> nextLevelNodes;
nodes.push_back(root);
while(!nodes.empty()) {
vec.clear();
nextLevelNodes.clear();
for(int i = 0;i < nodes.size(); i++) {
vec.push_back(nodes[i]->val);
for(int j = 0;j < nodes[i]->children.size(); j++) {
nextLevelNodes.push_back(nodes[i]->children[j]);
}
}
swap(nodes, nextLevelNodes);
res.push_back(vec);
}
return res;
}

LeetCodeLeetCode

Minimum Moves to Equal Array Elements II

All Possible Full Binary Trees