第22天
今天的题目是 Possible Bipartition :
Given a set of N
people (numbered 1, 2, ..., N
), we would like to split everyone into two groups of any size.
Each person may dislike some other people, and they should not go into the same group.
Formally, if dislikes[i] = [a, b]
, it means it is not allowed to put the people numbered a
and b
into the same group.
Return true
if and only if it is possible to split everyone into two groups in this way.
Example 1:
Input: N = 4, dislikes = [[1,2],[1,3],[2,4]]
Output: true
Explanation: group1 [1,4], group2 [2,3]
Example 2:
Input: N = 3, dislikes = [[1,2],[1,3],[2,3]]
Output: false
Example 3:
Input: N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
Output: false
Note:
1 <= N <= 2000
0 <= dislikes.length <= 10000
1 <= dislikes[i][j] <= N
dislikes[i][0] < dislikes[i][1]
- There does not exist
i != j
for whichdislikes[i] == dislikes[j]
.
又是一道图的题目,而且和昨天的题目思路是一样的,先遍历染色,然后再判断是否满足即可。
这里有些不同的是,这道题给出的输入是边的列表,然后我们需要手动建个图。同时,这道题还可以用在遍历时判断是否已经不符合了,进而可以提前退出。代码如下:
bool possibleBipartition(int N, vector<vector<int>>& dislikes) {
vector<vector<int>> graph(N);
for(int i = 0;i < dislikes.size(); i++) {
graph[dislikes[i][0]-1].push_back(dislikes[i][1]-1);
graph[dislikes[i][1]-1].push_back(dislikes[i][0]-1);
}
char color = 'b';
vector<char> visited(N, 'w');
for(int i = 0;i < N;i++) {
if (visited[i] == 'w' && dfs(graph, visited ,i, color) == false) {
return false;
}
}
return true;
}
bool dfs(vector<vector<int>> &graph, vector<char> &visited, int index, char color) {
visited[index] = color;
for(int i = 0;i < graph[index].size(); i++) {
int j = graph[index][i];
if ((visited[j] == 'w' && !dfs(graph, visited, j, ~color)) || visited[j] == color){
return false;
}
}
return true;
}